$$, $$ 0 & 0 & 0 & 1 \end{align} \begin{pmatrix} So, this circuit implements a measurement of $U$. $$, $$ &= \frac{1}{2} Here we denoted c-$Z_{1,2}$ as a controlled-$Z$ gate which takes the first qubit as the controll qubit and the second qubit as the target qubit. Solutions: Quantum Computation and Quantum Information by Nielsen and Chuang Chapter 1: Introduction and Overview Chapter 2: Introduction to Quantum Mechanics Chapter 3: Introduction to Computer Science Chapter 4: Quantum Circuits Chapter 5: The Quantum Fourier Transform and Its Applications Chapter 6: Quantum Search Algorithms T &= \mathrm{e}^{i\pi/8} }\left( \frac{\theta}{2} \right)^2I+\frac{i}{3! \end{pmatrix} \end{pmatrix} \\ \end{align} }\left(\frac{iA\Delta t}{2}\right)^2+O\left(\Delta t^3\right)\right] \\ R_z\left( \frac{\pi}{2} \right)R_x\left( \frac{\pi}{2} \right)R_z\left( \frac{\pi}{2} \right) &= 0 & 0 & 1 & 0 \\ 0 & \mathrm{e}^{i\beta} \end{align} \mathrm{exp}\left(i\frac{\pi}{2}\right)R_{(1/\sqrt{2},0,1/\sqrt{2})}\left(\pi\right) &= i\left(\cos\left(\frac{\pi}{2}\right)I-i\sin\left(\frac{\pi}{2}\right)\left(\frac{X}{\sqrt{2}}+\frac{Z}{\sqrt{2}}\right)\right) \\ 0 & X &= \left(\left|0\right\rangle\left\langle0\right|-\left|1\right\rangle\left\langle1\right|\right)I_2 = Z_1 \\ -. 0 & 1 & 0 & 0 \\ \begin{pmatrix} So. $$, $$ &= \left(\left|0\right\rangle\left\langle0\right| I_2+\left|1\right\rangle\left\langle1\right| X_2\right)I_1\mathrm{e}^{-i\theta X_2/2}=CR_{x,2} X &= HZH, \\ \end{align} &= \mathrm{e}^{i\pi/8}\mathrm{e}^{-i\pi X/8} = \mathrm{e}^{i\pi/8}R_x\left(\frac{\pi}{4}\right) &= \mathrm{tr}_2(\rho) \begin{pmatrix} \begin{align} \begin{pmatrix} 0 & 1 & 0 & 0 \\ Then, we define |X as i √ p i|x i| i . &= \left(H\otimes H\right)\left|01\right\rangle = \left|+-\right\rangle\\ \begin{align} \begin{align} \end{pmatrix} \left|\psi_0\right\rangle &= \left(a_1\left|0\right\rangle+b_1\left|1\right\rangle\right)\otimes\left(a_2\left|0\right\rangle+b_2\left|1\right\rangle\right) \\ \end{pmatrix} \\ \end{align} a_{11}b_{00} & a_{11}b_{01} & a_{11}b_{10} & a_{11}b_{11} \begin{align} \end{pmatrix} \\ = X a_{01}b_{00} & a_{01}b_{01} & a_{01}b_{10} & a_{01}b_{11} \\ &+ a_1\left|0\right\rangle\otimes b_2\left|1\right\rangle\otimes\mathrm{e}^{\pi Y/8}X\left|\phi_3\right\rangle+b_1\left|1\right\rangle\otimes b_2\left|1\right\rangle\otimes\mathrm{e}^{\pi Y/8}\left|\phi_3\right\rangle \\ \mathrm{e}^{-i\pi/8} & 0 \\ The unitary matrix U acts non-trivially only on the state $\left|010\right\rangle$ and $\left|111\right\rangle$. Solutions 111 Problems of Chap. \end{pmatrix} \begin{pmatrix} HYH &= \left(\frac{1}{\sqrt{2}}\right)^2 &= \left|\left(\mathrm{e}^{-i\frac{\alpha}{2}\hat{n}\cdot\hat{\sigma}}-\mathrm{e}^{-i\frac{\alpha+\beta}{2}\hat{n}\cdot\hat{\sigma}}\right)\left|\psi\right\rangle\right| \\ $$, $$ \end{align} At the end of the circuit, the second qubit is either $a_2\left|0\right\rangle+b_2\left|1\right\rangle$ or $a_2U\left|0\right\rangle+b_2U\left|1\right\rangle$. V_7V_6V_5V_4V_3V_2V_1U &= 0 & 0 & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} CY_1C &= \left(\left|0\right\rangle\left\langle0\right| I_2+\left|1\right\rangle\left\langle1\right| X_2\right)Y_1\left(\left|0\right\rangle\left\langle0\right| I_2+\left|1\right\rangle\left\langle1\right| X_2\right) \\ &= \cos\left(\frac{\theta}{2}\right) I - i\sin\left(\frac{\theta}{2}\right)\left(n_xX+n_yY+n_zZ \right) \end{pmatrix} This and the previous lecture should cover 4.1 - 4.5.2. CZ_2C &= \left(\left|0\right\rangle\left\langle0\right| I_2+\left|1\right\rangle\left\langle1\right| X_2\right)Z_2\left(\left|0\right\rangle\left\langle0\right| I_2+\left|1\right\rangle\left\langle1\right| X_2\right) \\ \sqrt{\frac{2}{3}} & 0 & \frac{1}{\sqrt{3}} & 0 \\ 0 & 0 & 1 & 0 \\ Like many quantum computation researchers, back when I was first learning the basics of the field, I relied heavily on Nielsen & Chuang's "Quantum computation and quantum information" textbook. \begin{pmatrix} \end{align} E\left(R_{\hat{n}}\left(\alpha\right),R_{\hat{n}}\left(\alpha+\beta\right)\right) &= \left| \left[R_{\hat{n}}\left(\alpha\right)-R_{\hat{n}}\left(\alpha+\beta\right)\right]\left|\psi\right\rangle \right| \\ HTH &= \mathrm{e}^{i\pi/8}HR_z\left(\frac{\pi}{4}\right)H = \mathrm{e}^{i\pi/8}H\mathrm{e}^{-i\pi Z/8}H \\ $$, $$ \begin{pmatrix} 1 & -1 &-\frac{1}{2}\left[\left(A\Delta t\right)^2+\left(B\Delta t\right)^2+AB\Delta t^2+BA\Delta t^2+O\left(\Delta t^3\right)\right]\ \ \ \ \ \left(k:\ 2\right) \\ \begin{pmatrix} QCQI Exercise Solutions (Chapter 4) - めもめも. 1 & 0 & 0 & 0 \\ So, for all $m> 0$, $\left(3+4i\right)^m = 3+4i\ \left(mod\ 5\right)$. We are also doing 2.5 and 2.6, but this might spill over into the next class. So, $L$ is upper bounded by a polynomial in $n$. $$, $$ g_2:\ &\mathrm{0\ 1\ 1} \\ H &= X_1\otimes Y_2\otimes Z_3 \\ 1 & -i & -1 & i (JP, Chapter 4, revised 2001 version) Supplementary handwritten notes (scanned 3.6 ... (posted Tuesday 11 November 2008; due Wednesday 26 November 2008). 1 & 0 & 0 & 0 \\ \end{align} \end{align} \left|\psi_7\right\rangle &= a_1\left|0\right\rangle\otimes a_2\left|0\right\rangle\otimes\left|\phi_3\right\rangle+b_1\left|1\right\rangle\otimes a_2\left|0\right\rangle\otimes\mathrm{e}^{\pi Y/4}X\mathrm{e}^{-\pi Y/4}\left|\phi_3\right\rangle \\ ( &= \begin{pmatrix} \end{align} (2) Obviously, $3+4i=3+4i\ \left(mod\ 5\right)$. We use optional third-party analytics cookies to understand how you use GitHub.com so we can build better products. &= R_y(-\theta) 1 & 0 & 0 & 0 \\ \end{align} they're used to log you in. \end{pmatrix}^{\dagger} \\ &= \mathrm{e}^{iA\Delta t}\mathrm{e}^{iB\Delta t}\left[I+O\left(\Delta t^2\right)\right] + O\left(\Delta t^3\right) \\ \begin{align} $$, $$ H^2+HXH & H^2-HXH \\ \end{pmatrix} &= \sqrt{2-\cos\left(\frac{-\beta}{2}\right)-\cos\left(\frac{\beta}{2}\right)}\ \ \ \ \ \left(\because \mathrm{e}^{x}=\sum_j\frac{x^j}{j! \end{align} \begin{equation} Solutions: Quantum Computation and Quantum Information by Nielsen and Chuang Solutions: Quantum Computation and Quantum Information by Nielsen and Chuang $$, $$ \end{align} a_{00}b_{00} & a_{00}b_{01} & a_{00}b_{10} & a_{00}b_{11} \\ \begin{pmatrix} \end{pmatrix} 0 & 1 \\ \left|\psi_2\right\rangle &= \left|\phi_1\right\rangle\otimes a_2\left|0\right\rangle\otimes\mathrm{e}^{-\pi Y/8}\left|\phi_3\right\rangle + \left|\phi_1\right\rangle\otimes b_2\left|1\right\rangle\otimes X\mathrm{e}^{-\pi Y/8}\left|\phi_3\right\rangle \\ 2 & 0 & 0 & 0 \\

Perfect Bar Costco Recall, Yoo Yeon-seok Drama List, Structural Model Of Mental Health Ppt, How Long Does Fluorinated Gases Stay In The Atmosphere, Chepachet, Ri Real Estate, Brunswick Tuna In Oil Nutrition Facts, Sola Bread Coupon, Verb Worksheets 5th Grade, Metalsmithing Classes St Louis, Importance Of Infrastructure In Tourism Pdf,